Crystal Data: Triclinic. *Point Group*: 1. Crystals, to 0.2 mm, are tabular on {001}, slightly to distinctly elongated along [010], and display {001}, {100}, {011}, {201}. In aggregates to 0.3 mm.

Physical Properties: Cleavage: Good on {001}. Fracture: Conchoidal. Tenacity: Brittle. Hardness = 4.5 D(meas.) = n.d. D(calc.) = 5.81

Optical Properties: Transparent to translucent. *Color*: Brown. *Streak*: Light brown. *Luster*: Adamantine.

Optical Class: Biaxial (-). $\alpha = 2.02(2)$ $\beta(\text{calc.}) = 2.07$ $\gamma = 2.12(2)$ $2V(\text{calc.}) = 65(5)^{\circ}$ Pleochroism: Strong, X = brown to opaque, Y = yellow, Z = pale yellow. Orientation: $X \approx [010]$; crystals lying on (001) X' show an oblique extinction of $\sim 7^{\circ}$ relative to [010].

Cell Data: Space Group: $P\vec{1}$. a = 9.144(3) b = 6.146(2) c = 9.337(3) $\alpha = 83.30(2)^{\circ}$ $\beta = 70.67(2)^{\circ}$ $\gamma = 87.14(2)^{\circ}$ Z = 2

X-ray Powder Pattern: Güldener Falk mine near Schneeberg-Neustädtel, Saxony, Germany. 3.752 (100), 2.901 (96), 1.751 (79), 2.667 (72), 8.757 (55), 3.552 (55), 3.507 (44)

Chemistry:		(1)	(2)		(1)	(2)
	Bi ₂ O ₃	51.54	53.09	NiO	1.61	
	PbO	0.08		ZnO	0.39	
	CaO	0.32		CuO	-	
	Fe_2O_3	10.90	9.10	As_2O_5	25.91	26.19
	Al_2O_3	0.07		P_2O_5	0.43	
	CoO	5.47	8.54	H_2O	[3.01]	3.08
				Total	99.73	100.00

(1) Güldener Falk mine near Schneeberg-Neustädtel, Saxony, Germany; average of 15 electron microprobe analyses, supplemented by Mössbauer and IR spectroscopy, H_2O calculated; corresponds to $(Bi_{1.91}Ca_{0.05})_{\Sigma=1.96}Fe_{1.02}(Co_{0.63}Fe_{0.16}Ni_{0.19}Zn_{0.04}Al_{0.01})_{\Sigma=1.03}[(OH)_{2.88}O_{1.12}]_{\Sigma=4.00}$ [(AsO₄)_{1.95}(PO₄)_{0.05}]_{$\Sigma=2.00$. (2) Bi₂Fe³⁺Co²⁺O(OH)₃(AsO₄)₂.}

Polymorphism & Series: Forms a series with neustädtelite.

Mineral Group: Medenbachite group.

Occurrence: In vugs in quartz collected on waste piles from mining activity.

Association: Neustädtelite, quartz, preisingerite, "limonite"/goethite, mixite, zeunerite, bismutite.

Distribution: Studied material from the dumps of the Güldener Falk mine near Schneeberg-Neustädtel, Saxony, Germany. Other mines with confirmed occurrence in the same district are Siebenschleken, Junge Kalbe, Friedefürst, and Peter und Paul.

Name: Recognizes the compositional importance of *cobalt* and relation with *neustädtelite*.

Type Material: State Museum for Geology and Mineralogy, Dresden, Germany (18329).

References: (1) Krause, W., H-J. Bernhardt, C. McCammon, and H. Effenberger (2002) Neustädtelite and cobaltneustädtelite, the Fe³⁺- and Co²⁺-analogues of medenbachite. Amer. Mineral., 87, 726-738.