Crystal Data: Orthorhombic. *Point Group*: 2/m 2/m 2/m. As tabular grains to $2 \mu m$.

Physical Properties: Cleavage: n.d. *Tenacity*: n.d. *Fracture*: n.d. Hardness = 4-5 (synthetic) D(meas.) = n.d. D(calc.) = 4.136

Optical Properties: Opaque. *Color*: White to gray (synthetic). *Streak*: n.d. *Luster*: Metallic (synthetic). *Optical Class*: n.d.

Cell Data: Space Group: Fddd. $a = 8.18(16) \ b = 4.85(10) \ c = 8.42(17) \ Z = 8$

X-ray Powder Pattern: Calculated pattern. 2.265 (100), 2.081 (78), 2.130 (43), 1.810 (39), 2.935 (31), 3.702 (9), 2.055 (9)

Chemistry:		(1)	(2)
	Si	57.61	53.99
	<u>Ti</u>	42.39	46.01
	Total	100.00	100.00

(1) Cr-11 orebody, Luobusha ophiolite, near Kangjinla, Tibet, China; average energy dispersive X-ray spectroscopic analysis; corresponds to Ti_{0.905}Si_{2.095}. (2) TiSi₂.

Occurrence: In podiform ophiolite. In a polymineralic spheroid 20 μ m across inferred to have crystallized from a droplet of Ti-Si-P intermetallic melt.

Association: Corundum, badengzhuite.

Distribution: In laboratory-concentrated separates from the Cr-11 orebody, Luobusha ophiolite, near Kangjinla, ~200 km east southeast of Lhasa, Tibet, China.

Name: Honors Chinese structural geologist Xu Zhiqin (b. 1941), an academician of the Chinese Academy of Sciences.

Type Material: Chinese Geological Museum, Beijing, People's Republic of China (M13817).

References: (1) Xiong, F., X. Xu, E. Mugnaioli, M. Gemmi, R. Wirth, E.S. Grew, P.T. Robinson, and J. Yang (2020) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi₂, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantle-derived fluids? Eur. J. Mineral., 32, 557-574.