Shuiskite-(Cr)

Crystal Data
Monoclinic. *Point Group*: 2/m. As prismatic to acicular crystals to 7 mm, elongated along [010] and slightly flattened on [100]. Commonly in divergent, sheaf-like aggregates. *Twining*: Simple “cruciform twins”, with (001) composition plane.

Physical Properties
D(meas.) = n.d.
D(calc.) = 3.432
Nonfluorescent.

Optical Properties

Optical Class: Biaxial (-).
\[a = 1.757(5) \quad \beta = 1.788(6) \quad \gamma = 1.794(6) \]

2V(meas.) = 45°
2V(calc.) = 46°
Pleochroism (thicker crystals): Strong, \(X = \) grayish, \(Y = \) light grayish green, \(Z = \) brown. *Absorption* (thicker crystals): \(X < Y < Z \). *Pleochroism* (thinner crystals): Weaker, \(X = \) light grayish to nearly colorless, \(Y = \) light grayish, \(Z = \) light grayish brown. *Dispersion*: Strong, crossed. *Orientation*: \(Z \wedge b \approx 12^\circ \).

Cell Data
Space Group: C2/m.
\[a = 19.2436(6) \quad b = 5.9999(2) \quad c = 8.8316(3) \quad \beta = 97.833(3)^\circ \quad Z = 4 \]

X-ray Powder Pattern
Rudnaya Cr mine, Glavnoe Saranovskoe deposit, Middle Urals, Russia.
2.913 (100), 3.783 (75), 2.755 (52), 2.539 (48), 2.470 (39), 4.707 (36), 1.602 (35), 4.759 (34)

Chemistry

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>21.33</td>
<td>20.49</td>
</tr>
<tr>
<td>MgO</td>
<td>3.17</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.41</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>28.50</td>
<td>41.64</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>33.86</td>
<td>32.93</td>
</tr>
<tr>
<td>H₂O</td>
<td>[5.82]</td>
<td>4.94</td>
</tr>
<tr>
<td>Total</td>
<td>98.27</td>
<td>100.00</td>
</tr>
</tbody>
</table>

(1) Rudnaya Cr mine, Glavnoe Saranovskoe deposit, Middle Urals, Russia; average electron microprobe and FTIR spectroscopic analyses, H₂O calculated from stoichiometry; corresponds to \(\text{Ca}_2\text{Cr}_2\text{Fe}_{0.55}\text{Mg}_{0.45}\text{Si}_3\text{O}_{10.5}(\text{OH})_2\text{O} \).

(2) \(\text{Ca}_2\text{Cr}_2\text{Si}_3\text{O}_{10}[(\text{Si}_2\text{O}_5\text{OH})]((\text{OH})_2\text{O}) \).

Polymorphism & Series
Solid solution series with shuiskite-(Mg).

Mineral Group
Pumpellyite group.

Occurrence
In fracture coatings in chromitite on mine walls.

Association
Calcite, Cr-bearing clinochlore, uvarovite.

Distribution
From the Rudnaya chromite mine (level 280 m), Glavnoe Saranovskoe deposit, Saranovskaya deposits, Sarany, Middle Urals, Russia. Perhaps from the Roche Noire massif, Auvergne-Rhône-Alpes, France (with structural confirmation of Cr allocation).

Name
The suffix identifies the analog of *shuiskite-(Mg)* with Cr dominant in the \(X \) site.

Type Material
A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (5481/1) and the Canadian Museum of Nature, Ottawa, Ontario, Canada (CMNMC 87302).

References
(1) Lykova, I., D. Varlamov, N. Chukanov, I. Pekov, D. Belakovskiy, O. Ivanov, N. Zubkova, and S. Britvin (2020) Chromium members of the pumpellyite group: Shuiskite-(Cr), \(\text{Ca}_2\text{Cr}_2\text{Si}_3\text{O}_{10}[(\text{Si}_2\text{O}_5\text{OH})]((\text{OH})_2\text{O}) \), a new mineral, and shuiskite-(Mg), a new species name for shuiskite. Minerals, 10(5), 390, 1-11.