Crystal Data: Monoclinic. *Point Group*: 2. As terminated, thick prismatic to acicular crystals to 8 mm elongated along [010], typically in spray- or bush-like radial clusters or open-work aggregates to 1.5 cm, which form interrupted crusts to 3×5 cm. *Twinning*: By contact on {100} in transmitted light; microtwinning with (100) as an operator (100/010/001) revealed by crystal structure analysis.

Physical Properties: *Cleavage*: Perfect on (001). *Tenacity*: Brittle. *Fracture*: Stepped. Hardness = 3.5 D(meas.) = 2.51(2) D(calc.) = 2.533 Nonfluorescent.

Optical Properties: Transparent. *Color*: Colorless, pale yellowish, pale beige, or pinkish. *Streak*: White. *Luster*: Vitreous. *Optical Class*: Biaxial (+). $\alpha = 1.565(2)$ $\beta = 1.566(2)$ $\gamma = 1.578(2)$ 2V(meas.) = 25(10)°

Optical Class: Biaxial (+). $\alpha = 1.565(2)$ $\beta = 1.566(2)$ $\gamma = 1.578(2)$ 2V(meas.) = 25(10)° 2V(calc.) = 32° Orientation: X = c, Y = b, Z = a. Parallel extinction; negative elongation.

Cell Data: *Space Group*: Displays OD character, with two MDO (maximum degree of order) structures: one (MDO1), with non-standard space group F2/d11 and the second (MDO2), corresponding to the structure-type of the new mineral, with non-standard space group $C112_1/m$. a = 11.2220(4) b = 7.3777(2) c = 22.9425(8) $y = 89.990(3)^{\circ}$ Z = 4

X-Ray Diffraction Pattern: Bazhenovskoe deposit, Asbest, Sverdlovsk Oblast, Russia. 11.52 (100), 3.088 (51), 2.982 (50), 5.46 (24), 1.848 (22), 2.838 (20), 3.562 (17)

Chemistry.	Che	mistry:
------------	-----	---------

	(1)
Na ₂ O	0.40
K_2O	0.28
CaO	36.60
MnO	0.04
BaO	0.07
Al_2O_3	6.46
SiO_2	42.32
H ₂ O	14.10
Total	100.27

(1) Bazhenovskoe deposit, Asbest, Sverdlovsk Oblast, Central Urals, Russia; average electron microprobe and IR analyses, H_2O by selective sorption from gaseous products of heating; corresponds to $Na_{0.09}K_{0.04}Ca_{4.72}Al_{0.92}Si_{5.09}O_{15.69}(OH)_{1.31} \cdot 5H_2O$.

Polymorphism & Series: Polytype 2M.

Mineral Group: Tobermorite supergroup, tobermorite group.

Occurrence: In a chrysotile asbestos deposit in grossular rhodingite.

Association: Prehnite, pectolite, thomsonite-Ca, calcite.

Distribution: From the Southern pit, Bazhenovskoe deposit, Asbest, Sverdlovsk Oblast, Central Urals, Russia.

Name: The prefix from the Greek $\pi\alpha\rho\alpha$ for "near" alludes to the relationship to *tobermorite*.

Type Material: A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (5643/1; 97513).

References: (1) Pekov, I.V., N.V. Zubkova, N.V. Chukanov, S. Merlino, V.O. Yapaskurt, D.I. Belakovskiy, A.B. Loskutov, E.A. Novgorodova, S.A. Vozchikova, S.N. Britvin, and D.Y. Pushcharovsky (2022) Paratobermorite, Ca₄(Al_{0.5}Si_{0.5})₂Si₄O₁₆(OH)•2H₂O•(Ca•3H₂O), a new tobermorite supergroup mineral with a novel topological type of the microporous crystal structure. Amer. Mineral., 107, 2272-2281.