Crystal Data: Hexagonal. *Point Group*: 3 2/m. As reaction rims or aggregates <100 μ m at the contact of orthopyroxene phenocrysts and talc.

Physical Properties: *Cleavage*: n.d. *Tenacity*: n.d. *Fracture*: n.d. Hardness = n.d. D(meas.) = n.d. D(calc.) = 3.24 Extremely vulnerable to oxidation in contact with air and, in a few hours, it converts to iron oxyhydroxides (typically akaganéite).

Optical Properties: Translucent. *Color*: Light blue-gray (synthetic); greenish (under the microscope). *Streak*: Gray (synthetic). *Luster*: Nonmetallic. *Optical Class*: n(calc.) = 1.75

Cell Data: Space Group: $R\bar{3}m$. a = 6.94(5) c = 14.5(2)

X-Ray Diffraction Pattern: Calculated pattern. 2.31 (100), 2.82 (62), 5.55 (42), 1.73 (36), 2.94 (22), 1.85 (17), 1.53 (15)

Chemistry:		(1)	(2)
	Fe	54.29	56.36
	Mn	0.33	
	Mg	0.05	
	Si	0.03	
	Cl	16.13	17.87
	Na	0.02	
	Κ	0.01	
	Ca	0.25	
	Н		1.53
	OH	[25.81]	24.22
	Total	96.93	100.00

(1) Karee mine, Rustenburg District, Bushveld complex, South Africa; average electron microprobe analysis supplemented by Raman spectroscopy, OH calculated from stoichiometry; corresponds to $(Fe^{2+}_{1.98}Mn^{2+}_{0.01}Ca_{0.01})(OH)_{3.08}Cl_{0.92}$. (2) Fe₂(OH)₃Cl.

Polymorphism & Series: A dimorph of hibbingite.

Occurrence: As a replacement product, either after rock-forming silicates with Fe^{2+} (e.g., orthopyroxenes), iron meteorites, or man-made iron objects if they were in contact with chloride-rich anoxic brines. Could be a large reservoir for Cl and H₂O in altered mafic and ultramafic rocks.

Association: Talc, orthopyroxene ($En_{74-76}Fs_{23-24}Wo_{0-2}$), cummingtonite, magnesio-ferri-hornblende, actinolite, tremolite; also locally, carbonates (siderite, dolomite, calcite), sulfides (pyrrhotite, pentlandite, chalcopyrite), sericite, chromite with a hercynite component, rutile, magnetite (Karee mine). Akaganéite (iron meteorites).

Distribution: From the Karee mine, Rustenburg District, Bushveld complex, South Africa.

Name: The prefix indicates the dimorphous relation with hibbingite.

Type Material: Mineralogical Museum, Comenius University, Bratislava, Slovakia (7601).

References: (1) Koděra, P., J. Majzlan, K. Pollok, S. Kiefer, F. Šimko, E. Scholtzová, J. Luptáková, and G. Cawthorn (2022) Ferrous hydroxychlorides hibbingite $[\gamma$ -Fe₂(OH)₃Cl] and parahibbingite $[\beta$ -Fe₂(OH)₃Cl] as a concealed sink of Cl and H₂O in ultrabasic and granitic systems. Amer. Mineral., 107, 826-841.