Chemistry:

Crystal Data: Monoclinic. *Point Group*: 2/m. As euhedral equant crystals (M_l) to 0.80 mm or aggregates of bladed crystals (M_2) elongated along [001].

Physical Properties: *Cleavage*: Perfect on {101}. *Tenacity*: Brittle. *Fracture*: n.d. Hardness = ~ 2 D(meas.) = 2.12(2) M_1 ; 2.10(2) M_2 D(calc.) = 2.138 M_1 ; 2.086 M_2

Optical Properties: Transparent. *Color*: Greenish blue in transmitted light. *Streak*: White. *Luster*: Vitreous.

Optical Class: Biaxial (-). M_1 : $\alpha = 1.595(3)$ $\beta = 1.629(8)$ $\gamma = 1.645(5)$ 2V(meas.) = 69(2)° 2V(calc.) = 67° *Orientation*: $X^{\land} c = 42^{\circ}$, Y = b. *Pleochroism*: X = Z = light blue-green, Y = bluegreen. *Dispersion*: Weak, v > r. M_2 : $\alpha = 1.520(5)$ $\beta = 1.578(6)$ $\gamma = 1.610(5)$ 2V(meas.) = 73(2)° 2V(calc.) = 70° *Orientation*: $X^{\land} c = 36^{\circ}$, Y = b. *Pleochroism*: X = Z = pale blue, Y = greenish blue. *Dispersion*: Weak, v > r.

Cell Data: Space Group: $P2_1/n$. M_1 : a = 5.1049(2) b = 8.6742(4) c = 7.7566(3) $\beta = 106.834(2)^\circ$ Z = 2 M_2 : a = 5.1977(3) b = 7.4338(4) c = 8.8091(4) $\beta = 101.418(2)^\circ$ Z = 2 M_1 has b > c, with $\beta = 106.8^\circ$, whereas M_2 has b < c, with $\beta = 101.4^\circ$

X-Ray Diffraction Pattern: Pusch Ridge, Santa Catalina Mountains, Pima Co., Arizona, USA. 5.64 (100), 3.34 (63), 4.77 (52), 3.23 (25), 2.22 (25), 2.09 (22), 2.50 (22)

	(1)	(2)
Cu	30.17	29.98
С	22.6	22.2
Н	[2.84]	[2.83]
<u>0</u>	[45.23]	[44.94]
Total	100.84	99.95

(1) Pusch Ridge, Santa Catalina Mountains, Pima Co., Arizona, USA; electron microprobe analysis for Cu, an Elemental Combustion System equipped with mass spectrometry for C; H and O calculated from structure; M_1 corresponds to Cu_{1.01}(C_{1.99}H_{2.99}O₃)₂. (2) Do.; M_2 corresponds to Cu_{1.01}(C_{1.98}H_{3.00}O₃)₂

Polymorphism & Series: Two polytypes M₁ and M₂

Occurrence: Formed by the interaction of fluids containing glycolic acid ($C_2H_4O_3$) with copper produced by the oxidation of primary and secondary minerals.

Association: Chrysocolla, malachite, wulfenite, mimetite, hydroxylpyromorphite, hematite, microcline, muscovite, quartz.

Distribution: From the western end of Pusch Ridge, at elevation (975 m), Santa Catalina Mountains, north of Tucson, Pima Co., Arizona, USA.

Name: Honors the finders of the studied material, Warren G. Lazar and Beverly Raskin, avid prospectors and hunters of meteorites and minerals.

Type Material: University of Arizona Mineral Museum, Tucson, Arizona, USA (22052 and 22381 for lazaraskeite- M_1 and $-M_2$, respectively) and the RRUFF Project (R180026 and R190015).

References: (1) Yang, H., X. Gu, R.B. Gibbs, S.H. Evans, R.T. Downs, and Z. Jibrin (2022) Lazaraskeite, $Cu(C_2H_3O_3)_2$, the first organic mineral containing glycolate, from the Santa Catalina Mountains, Tucson, Arizona, U.S.A. Amer. Mineral., 107, 509-516.