Crystal Data: Monoclinic. *Point Group*: 2. As tabular to lamellar crystals flattened on (110) to 0.3 mm and in parallel intergrowths.

Physical Properties: *Cleavage*: Perfect on {010} and imperfect on {100}. *Tenacity*: Brittle. *Fracture*: Stepped. Hardness = ~ 3 D(meas.) = 2.11(1) D(calc.) = 2.115 Nonfluorescent. Slowly dissolves in cold diluted HCl without effervescence.

Optical Properties: Transparent. *Color*: Colorless. *Streak*: White. *Luster*: Vitreous. *Optical Class*: Biaxial (+). $\alpha = 1.563$ (2) $\beta = 1.565$ (2) $\gamma = 1.574$ (2) $2V(\text{meas.}) = 50(10)^{\circ}$ $2V(\text{calc.}) = 5^{\circ}$ *Dispersion*: Distinct, r > v. *Orientation*: Y = b, X = a. Non-pleochroic.

Cell Data: Space Group: P2₁. a = 8.7398(2) b = 14.4129(3) c = 11.3060(3) $\beta = 106.665(2)^{\circ}$ Z = 2

X-Ray Diffraction Pattern: Verkhnekamskoe deposit, Perm Krai, Northwest Urals, Russia. 7.22 (100), 8.38 (67), 10.81 (41), 8.65 (26), 5.452 (22), 3.019 (22), 3.610 (21)

Chemistry:		(1)	(2)
	B_2O_3	8.15	7.95
	Al_2O_3	46.27	46.58
	SiO ₂	0.06	
	Cl	15.48	16.19
	H_2O	[33.74]	32.93
	-O = Cl	3.50	3.65
	Total	100.20	100.00

(1) Verkhnekamskoe deposit, Perm Krai, Northwest Urals, Russia; average electron microprobe and ICP-MS analyses; H₂O calculated from structure; corresponds to $(Al_{7.87}Si_{0.01})_{\Sigma=7.88}[B_{2.03}O_4(OH)_2]$ [(OH)_{15.74}(H₂O)_{0.26}]_{$\Sigma=16$}[(Cl_{3.79}(OH)_{0.21}]_{$\Sigma=4$}·7H₂O. (2) Al₈[B₂O₄(OH)₂](OH)₁₆Cl₄·7H₂O.

Occurrence: Formed by diagenetic or post-diagenetic processes in halite-carnallite evaporitic rock.

Association: Dritsite, dolomite, magnesite, quartz, baryte, kaolinite, potassic feldspar, congolite, members of the goyazite-woodhouseite series, fluorite, hematite, anatase.

Distribution: From the Romanovskiy area (borehole #2001, depth 248 m), Verkhnekamskoe deposit, 30 km south of Berezniki, Perm Krai, Northwest Urals, Russia.

Name: Honors Russian mining engineer and scientist Arkadiy Evgenievich *Krasnoshtein* (1937-2009) specialist in the mining of potassium salts for his contributions to the exploitation of underground mines at the Verkhnekamskoe deposit.

Type Material: A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (5239/1; 96274).

References: (1) Pekov, I.V., N.V. Zubkova, I.I. Chaikovskiy, E.P. Chirkova, D.I. Belakovskiy, V.O. Yapaskurt, Y.V. Bychkova, I. Lykova, S.N. Britvin, and D.Y.Pushcharovsky (2020) Krasnoshteinite, Al₈[B₂O₄(OH)₂](OH)₁₆Cl₄·7H₂O, a new microporous mineral with a novel type of borate polyanion. Crystals, 10(4), 301, 1-14.