Crystal Data: Monoclinic. *Point Group*: 2/m. Typically, in sprays of needles or narrow blades to ~ 0.2 mm elongate along [010] and flattened on $\{100\}$, that exhibit $\{100\}$, $\{001\}$ and $\{230\}$.

Physical Properties: Cleavage: Two good in the [010] zone, probably $\{100\}$ and $\{001\}$. Tenacity: Brittle. Fracture: Splintery. Hardness = \sim 2 D(meas.) = 2.12(2) D(calc.) = 2.116 Nonfluorescent. Easily soluble in dilute HCl.

Optical Properties: Transparent. *Color*: Light green-blue. *Streak*: White. *Luster*: Vitreous. *Optical Class*: Biaxial (+). $\alpha = 1.540(2)$ $\beta = 1.550(5)$ $\gamma = 1.582(2)$ 2V(meas.) = $58.5(5)^{\circ}$ 2V(calc.) = 59.4° *Dispersion*: Moderate, r > v. *Orientation*: Z = b, $Y \approx a$. *Pleochroism*: X = pale blue, Y = pale nearly colorless, Z = light blue. *Absorption*: Y < X < Z.

Cell Data: Space Group: $P2_1/c$. a = 10.356(6) b = 8.923(5) c = 13.486(7) $\beta = 92.618(9)^{\circ}$ Z = 2

X-Ray Diffraction Pattern: Rowley mine, Maricopa Co., Arizona, USA. 10.39 (100), 6.73 (50), 3.160 (47), 2.977 (44), 3.104 (42), 3.789 (35), 3.043(35)

Chemistry:		(1)	(2)
v	$(NH_4)_2O$	10.47	9.85
	K_2O	10.54	11.88
	Na_2O	0.35	
	MgO	0.05	
	Al_2O_3	0.12	
	VO_2	20.60	20.91
	P_2O_5	36.17	35.79
	As_2O_5	1.76	
	C_2O_3	[9.33]	9.08
	H_2O	[12.90]	12.49
	Total	102.29	100.00

 $\begin{array}{l} \text{(1) Rowley mine, Maricopa Co., Arizona, USA; average electron microprobe and IR spectroscopic analyses, C and H content calculated from structure; corresponding to $[(NH_4)_{3.11}K_{1.73}Na_{0.09}]_{\Sigma=4.93}$ $$[(V^{4+}_{1.92}Mg_{0.01}Al_{0.02})_{\Sigma=1.95}O_2](C_2O_4)[(P_{3.94}As_{0.12})_{\Sigma=4.06}O_{10.94}(OH)_{5.06}]^{\bullet}3H_2O.$ $$(2) $[(NH_4)_3K_2](V^{4+}O)_2(C_2O_4)[PO_{2.75}(OH)_{1.25}]_4^{\bullet}3H_2O.$ $$} \end{array}$

Occurrence: In a bat-guano-related, post-mining assemblage in a hot and humid area of the mine.

Association: Antipinite, fluorite, mimetite, mottramite, quartz, rowleyite, salammoniac, struvite, vanadinite, willemite, wulfenite.

Distribution: At the Rowley mine (125-foot level), ~20 km northwest of Theba, Maricopa Co., Arizona, USA.

Name: Honors British-Canadian crystallographer Dr. I. *David Brown* (b. 1932) for developing Bond-Valence Theory, now used extensively by mineralogical crystallographers to both validate structural arrangements and to derive crystal-chemical details (e.g., the presence of hydrogen and its speciation in structures and the arrangements of hydrogen bonds) that are not revealed directly by crystal-structure refinement. The suffix indicates $(NH_4)^+ > K^+$.

Type Material: Natural History Museum of Los Angeles County, Los Angeles, California, USA (66951, 66955 and 66959).

References: (1) Kampf, A.R., M.A. Cooper, G.R. Rossman, B.P. Nash, F.C. Hawthorne, and J. Marty (2019) Davidbrownite-(NH₄), (NH₄,K)₅(V⁴⁺O)₂(C₂O₄)[PO_{2.75}(OH)_{1.25}]₄·3H₂O, a new phosphate-oxalate mineral from the Rowley mine, Arizona, USA. Mineral. Mag., 83, 869-877.