Badengzhuite TiP

Crystal Data: Hexagonal. *Point Group*: 6/m 2/m 2/m. As globules to $\sim 0.5 \mu m$ and one oval grain $\sim 1 \mu m$. *Twinning*: Observed in the synthetic equivalent.

Physical Properties: Cleavage: n.d. Tenacity: Brittle (synthetic). Fracture: n.d. Hardness = n.d. D(meas.) = n.d. D(calc.) = 4.233

Optical Properties: Opaque. *Color*: Gray to black (synthetic). *Streak*: n.d.

Luster: Metallic (synthetic).

Optical Class: n.d.

Cell Data: *Space Group*: $P6_3/mmc$. a = 3.49(7) c = 11.7(2) Z = 4

X-ray Powder Pattern: Calculated pattern.

2.394 (100), 1.745 (44), 2.107 (33), 2.688 (31), 2.927 (26), 1.856 (26), 3.022 (14)

Chemistry:

	(1)	(2)
P	39.44	39.29
Ti	60.56	60.71
Total	100.00	100.00

(1) Cr-11 orebody, Luobusha ophiolite, near Kangjinla, Tibet, China; energy dispersive X-ray spectroscopic analysis; corresponds to Ti_{1.020}P_{0.980}. (2) TiP.

Occurrence: In podiform ophiolite. In a polymineralic spheroid 20 μ m across inferred to have crystallized from a droplet of Ti-Si-P intermetallic melt.

Association: Corundum, zhiqinite.

Distribution: In laboratory-concentrated separates from the Cr-11 orebody, Luobusha ophiolite, near Kangjinla, ~200 km east southeast of Lhasa, Tibet, China.

Name: Honors Tibetan geologist *Badengzhu* (b. 1939) of the Tibet Ore Industry Co., Ltd., Lhasa, who discovered the chromite ore deposits in the Luobusa ophiolite.

Type Material: Chinese Geological Museum, Beijing, People's Republic of China (M13817).

References: (1) Xiong, F., X. Xu, E. Mugnaioli, M. Gemmi, R. Wirth, E.S. Grew, P.T. Robinson, and J. Yang (2020) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi₂, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantlederived fluids? Eur. J. Mineral., 32, 557-574.