Vanarsite
NaCa$_{12}$(As$^{3+}$V$^{4+}$)$_{3.5}$V$^{5+}_{18.5}$As$^{5+}$$O_{51}$)$^{2-}$·78H$_2$O

Crystal Data: Monoclinic. *Point Group: 2/m.* As blades flattened on {100} and elongated along [010], and as subparallel or fan-like aggregates to 5 mm.

Physical Properties:
Clearance: Fair on {100}. *Tenacity:* Brittle. *Fracture:* Curved.
Hardness = ~ 2
D(meas.) = 2.48(2)
D(calc.) = 2.460
Dissolves in dilute HCl.

Optical Properties:
Luster: Vitreous.
Optical Class: Biaxial (-).
$\alpha = 1.645(5)$
β(calc.) = 1.677
γ(calc.) = 1.681
$2V$(meas.) = 37(2)°
$2V$(calc.) = n.d.
Orientation: $Y = b$, $X^a \approx 12^\circ$ in obtuse β.
Pleochroism: $X =$ cornflower blue, $Y =$ dark blue, $Z =$ dark blue.
Absorption: $X << Z < Y$.
Dispersion: None.

Cell Data:
Space Group: P_2_1/c.
$a = 25.8815(5) m\ A$
$b = 10.9416(2) m\ A$
$c = 28.2861(6) m\ A$
$\beta = 102.2150(10)^\circ$
$Z = 2$

X-ray Powder Pattern: Packrat mine, Gateway district, Mesa County, Colorado, USA.
13.1 (100), 10.0 (98), 9.3 (63), 7.87 (56), 4.67 (35), 4.44 (31), 3.339 (33)

Chemistry:
<table>
<thead>
<tr>
<th>Formula</th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na$_2$O</td>
<td>0.63</td>
<td>0.54</td>
</tr>
<tr>
<td>CaO</td>
<td>13.08</td>
<td>11.30</td>
</tr>
<tr>
<td>SrO</td>
<td>0.21</td>
<td>0.19</td>
</tr>
<tr>
<td>FeO</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>As$_2$O$_3$</td>
<td>[3.41]</td>
<td></td>
</tr>
<tr>
<td>As$_2$O$_5$</td>
<td>31.61</td>
<td>[23.34]</td>
</tr>
<tr>
<td>VO$_2$</td>
<td>[9.55]</td>
<td></td>
</tr>
<tr>
<td>V$_2$O$_5$</td>
<td>43.89</td>
<td>[27.44]</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>[24.20]</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>89.47</td>
<td>100.00</td>
</tr>
</tbody>
</table>

(1) Packrat mine, Gateway district, Colorado, USA; average of 16 electron microprobe analyses.
(2) Analysis 1 normalized, H$_2$O calculated from structure, As and V apportioned for charge balance and structural criteria; corresponds to (Ca$_{11.70}$Na$_{1.01}$Sr$_{0.11}$Fe$^{2+}$$_{0.02}$)$_{12-}$·12As$_{3.34}V^{4+}$$\times_{3.34}V^{5+}$$\times_{8.76}As^{5+}$$\times_{5.50}O_{51}$)$^{2-}$·78H$_2$O.

Occurrence: A secondary mineral formed by the oxidation of montroseite-corvusite assemblages in a moist environment.

Association: Gatewayite, morrisonite, packratite, pharmacolite, montroseite, corvusite.

Distribution: From the Packrat mine, Gateway district, Mesa County, Colorado, USA.

Name: An acronym based on the composition and specifically the fact that it contains vanadate, arsenite, and arsenate groups.

Type Material: Natural History Museum of Los Angeles County, Los Angeles, California, USA (64149 and 64150).

References:
(1) Kampf, A.R., J.M. Hughes, B.P. Nash, and J. Marty (2016) Vanarsite, packratite, morrisonite, and gatewayite: four new minerals containing the [As$_{3.34}$V$^{4+}$$\times_{3.34}V^{5+}$$\times_{8.76}As^{5+}$$\times_{5.50}O_{51}$)$^{2-}$·78H$_2$O heteropolyanion, a novel polyoxometalate cluster. Can. Mineral., 54, 145-162.
(2) (2017) Amer. Mineral., 102, 1145-1146 (abs. ref. 1).