Pyroxmangite

\[\text{Mn}^{2+} \text{SiO}_3 \]

Crystal Data: Triclinic. Point Group: \(\overline{1} \). Crystals typically tabular on \(\{001\} \), to 10 cm; porphyroblastic, granular. Twinning: Lamellar on \(\{010\} \), simple on \(\{001\} \), uncommon.

Physical Properties: Cleavage: Perfect on \(\{110\} \), \(\{1\overline{1}0\} \), \(\{1\overline{0}0\} \) \& \(\{110\} \) = 92°; poor on \(\{010\} \), \(\{001\} \). Hardness = 5.5–6 D(meas.) = 3.61–3.80 D(calc.) = [3.75]

Optical Properties: Semitransparent. Color: Pink, red, commonly covered with brown or black oxidation products; colorless to faint lilac in thin section. Luster: Pearly to vitreous. Optical Class: Biaxial (+). Dispersion: \(r > v \), moderate. \(\alpha = 1.728–1.748 \), \(\beta = 1.730–1.742 \), \(\gamma = 1.746–1.758 \), \(2V(\text{meas.}) = 37°–46° \).

Cell Data: Space Group: \(\overline{C}\overline{1} \). \(a = 9.690 \), \(b = 10.505 \), \(c = 17.391 \), \(\alpha = 112.17° \), \(\beta = 102.85° \), \(\gamma = 82.93° \), \(Z = 14 \).

X-ray Powder Pattern: Synthetic. 2.967 (100), 2.188 (45), 4.73 (35), 2.680 (35), 1.422 (30), 3.47 (25), 3.04 (25).

Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>(\text{SiO}_2)</th>
<th>(\text{Al}_2\text{O}_3)</th>
<th>(\text{Fe}_2\text{O}_3)</th>
<th>(\text{FeO})</th>
<th>(\text{MnO})</th>
<th>(\text{MgO})</th>
<th>(\text{CaO})</th>
<th>(\text{Na}_2\text{O} + \text{K}_2\text{O})</th>
<th>(\text{H}_2\text{O})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>45.74</td>
<td>trace</td>
<td>trace</td>
<td>0.39</td>
<td>52.42</td>
<td>0.68</td>
<td>0.46</td>
<td>0.05</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>100.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Polymorphism & Series: Forms a series with pyroxferroite.

Occurrence: In regionally metamorphosed manganese ore deposits and manganiferous rocks, perhaps with lower temperature history than rhodonite-bearing rocks.

Association: Spessartine, tephroite, alleghanite, hausmannite, pyrophanite, alabandite, rhodonite, rhodochrosite.

Distribution: Exceptional material in the Taguchi and other mines, Shidara, Aichi Prefecture; from Iwaizumi, Iwate Prefecture; and at many other places in Japan. Large crystals at Broken Hill, New South Wales, Australia. From Simsiö, Lapua, Finland. In Sweden, at Fillinge. From Glen Beag, Glenelg district, Inverness-shire, Scotland. In the USA, in Colorado, from the American tunnel, Silverton, San Juan Co., the Galena district, Hinsdale Co., and the Idarado mine, Ouray Co.

Name: A combination of PYROXene and MANGanese, in allusion to the mineral’s structure and composition.

Type Material: “Type material” from Iva, South Carolina, USA, has been redefined as pyroxferroite, as Fe > Mn.