Putnisite

\[\text{SrCaCr}_8^{3+}(\text{CO}_3)_8\text{SO}_4(\text{OH})_{16} \cdot 25\text{H}_2\text{O} \]

Crystal Data: Orthorhombic.
Point Group: 2/m 2/m 2/m.
As pseudocubic crystals to 0.5 mm.

Physical Properties:
Cleavage: One excellent and two good parallel to \{100\}, \{010\}, and \{001\}.
Fracture: Uneven.
Tenacity: Brittle.
Hardness: 1.5-2
\(D(\text{meas.}) = 2.20(3) \)
\(D(\text{calc.}) = 2.23 \)

Optical Properties:
Translucent.
Color: Pale to dark purple.
Streak: Pink.
Luster: Vitreous.
Optical Class: Biaxial (-).
\(\alpha = 1.552(3) \)
\(\beta = 1.583(3) \)
\(\gamma = 1.599(3) \)
Orientation: Uncertain.

Pleochroism: Distinct,
\(X = \) pale bluish gray,
\(Y = \) pale purple,
\(Z = \) pale purple.

Cell Data:
Space Group: Pnma.
\(a = 15.351(3) \)
\(b = 20.421(4) \)
\(c = 18.270(4) \)
\(Z = 4 \)

X-ray Powder Pattern: Halls Knoll gossan, Western Australia, Australia.
13.58 (100), 7.66 (80), 6.67 (43), 5.084 (19), 3.689 (16), 4.901 (13), 7.09 (10)

Chemistry:

<table>
<thead>
<tr>
<th>Element</th>
<th>Formula</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td></td>
<td>0.17</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>10.81</td>
</tr>
<tr>
<td>SrO</td>
<td></td>
<td>5.72</td>
</tr>
<tr>
<td>BaO</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td>CuO</td>
<td></td>
<td>0.29</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td></td>
<td>31.13</td>
</tr>
<tr>
<td>SO₃</td>
<td></td>
<td>3.95</td>
</tr>
<tr>
<td>SiO₂</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>Cl⁻</td>
<td></td>
<td>0.28</td>
</tr>
<tr>
<td>CO₂</td>
<td></td>
<td>[17.94]</td>
</tr>
<tr>
<td>H₂O</td>
<td></td>
<td>[30.30]</td>
</tr>
<tr>
<td>-O=Cl</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.81</td>
</tr>
</tbody>
</table>

(1) Halls Knoll gossan, Western Australia, Australia; average of 11 electron microprobe analyses,
\(\text{CO}_2 \) and \(\text{H}_2\text{O} \) calculated from crystal structure analysis and confirmed by infrared spectroscopy,
\(\text{OH}^- \) calculated for charge balance; corresponding to
\(\text{Cr}^{3+} \cdot \text{0.02Ca} \cdot \text{0.01Sr} \cdot \text{0.01Cu} \cdot \text{0.07Mg} \cdot \text{0.04Ba} \cdot \text{0.02[SiO}_4 \cdot \text{0.09(SiO}_2 \cdot 0.03]Z=0.99(\text{CO}_3) \cdot 0.98(\text{OH}) \cdot 16.19\text{Cl} \cdot 0.15^2 \cdot \text{24.84H}_2\text{O} \).

Occurrence: A product of the oxidation of a massive nickel sulfide deposit in komatiitic/dioritic rocks.

Association: Quartz, a near-amorphous dark green mineral.

Distribution: From the Halls Knoll gossan, Polar Bear peninsula, Southern Lake Cowan, 40 km north of Norseman, Western Australia, Australia.

Name: Honors Australian mineralogists Christine and Andrew Putnis of the Institut für Mineralogie,
Universität Münster, Germany, in recognition of their outstanding contributions to mineralogy.

Type Material: South Australian Museum, Adelaide, South Australia, (registration number G33429) and at the Canadian Museum of Nature, Ottawa, Canada (CMNMC 86133).

References:
(1) Elliott, P., G. Giester, R. Rowe, and A. Pring (2014) Putnisite,
\(\text{SrCaCr}_8^{3+}(\text{CO}_3)_8\text{SO}_4(\text{OH})_{16} \cdot 25\text{H}_2\text{O} \), a new mineral from Western Australia: description and crystal structure. Mineral. Mag., 78(1), 131-144.