Fermiite

\[\text{Na}_4(\text{UO}_2)(\text{SO}_4)_3 \cdot 3\text{H}_2\text{O} \]

Crystal Data: Orthorhombic.
Point Group: mm2.
As prisms elongated along [010] to ~ 0.5 mm and in subparallel or irregular aggregates. Crystals display \{101\}, \{011\}, \{110\}, \{010\}, and \{001\}.
Twinning: Penetration twins by 180° rotation on [010].

Physical Properties:
Cleavage: None.
Fracture: Conchoidal.
Tenacity: Brittle.
Hardness: 2.5
\[D(\text{meas.}) = 3.23(2) \quad D(\text{calc.}) = 3.275 \]
Slightly deliquescent and easily soluble in H\text{2}O.
Bright greenish white fluorescence under UV.

Optical Properties:
Color: Greenish yellow.
Luster: Vitreous.
Streak: White.
Orientation: \(X = b, Y = c, Z = a\).
\[\alpha = 1.527 \quad \beta = 1.534 \quad \gamma = 1.567 \]
Dispersion: Distinct, \(r < v\).
Absorption: \(X = Y < Z\).
Pleochroism: \(X = Y\) = colorless, \(Z\) = pale greenish yellow.

Cell Data:
Space Group: Pmn2\(_1\).
\[a = 11.8407(12) \quad b = 7.8695(5) \quad c = 15.3255(19) \quad Z = 4 \]

X-ray Powder Pattern: Blue Lizard mine, White Canyon district, San Juan County, Utah, USA.
7.01 (100), 3.476 (85), 3.131 (57), 3.336 (55), 6.00 (49), 7.71 (43), 4.70 (42)

Chemistry:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{Na}_2\text{O}</td>
<td>17.10</td>
<td>17.60</td>
</tr>
<tr>
<td>\text{UO}_3</td>
<td>42.77</td>
<td>40.62</td>
</tr>
<tr>
<td>\text{SO}_3</td>
<td>33.85</td>
<td>34.11</td>
</tr>
<tr>
<td>\text{H}_2\text{O}</td>
<td>[7.70]</td>
<td>7.67</td>
</tr>
<tr>
<td>Total</td>
<td>101.42</td>
<td>100.00</td>
</tr>
</tbody>
</table>

(1) Blue Lizard mine, White Canyon district, San Juan County, Utah, USA; average of 6 electron microprobe analyses supplemented by Raman spectroscopy, H\text{2}O calculated from stoichiometry; corresponding to \(\text{Na}_{3.88}(\text{U}_{1.05}\text{O}_2)(\text{SO}_4)_{3.89}\cdot 3\text{H}_2\text{O}\).
(2) \(\text{Na}_4(\text{UO}_2)(\text{SO}_4)_3 \cdot 3\text{H}_2\text{O}\).

Occurrence: A secondary mineral from post-mining oxidation of primary uraninite, pyrite, chalcopyrite, bornite, and covellite deposited as replacement of wood and other organic material and as disseminations in the enclosing sandstone.

Association: Oppenheimerite, blödite, bluelizardite, chalcanthite, epsomite, gypsum, hexahydrite, kröhnkite, manganoblödite, sideronatrite, tamarugite, wetherillite.

Distribution: From the Blue Lizard mine, Red Canyon, White Canyon district, San Juan County, Utah, USA.

Name: Honors Italian-American theoretical and experimental physicist Enrico Fermi (1901-1954), well known for his work for the Manhattan Project during World War II.

Type Material: Natural History Museum of Los Angeles County, Los Angeles, California, USA (65546-65548), and the A.E. Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia (94621).

References:

(1) Kampf, A.R., J. Plašil, A.V. Kasatkin, J. Marty and J. Čejka (2015) Fermiite, \(\text{Na}_4(\text{UO}_2)(\text{SO}_4)_3 \cdot 3\text{H}_2\text{O}\) and oppenheimerite, \(\text{Na}_2(\text{UO}_2)(\text{SO}_4)_2 \cdot 3\text{H}_2\text{O}\); two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineral. Mag., 79(5), 1123-1142.