Falottaite MnC₂O₄·3H₂O

Crystal Data: Orthorhombic. *Point Group*: $2/m \ 2/m \ 2/m$. As well-formed ship-like crystals to 1 mm elongated along [001] and flattened along [010] displaying {010}, {100}, and {101}. *Twinning*: Common by an undetermined law.

Physical Properties: Cleavage: None. Tenacity: n.d. Fracture: n.d. Hardness = 2.5 D(meas.) = n.d. D(calc.) = 1.924

Optical Properties: Transparent. *Color*: Colorless. *Streak*: White. *Luster*: Vitreous. Turns milky white and opaque in a few months, by dehydration to lindbergite MnC₂O₄·2H₂O. *Optical Class*: Biaxial. $\alpha = 1.460$ $\beta = \text{n.d.}$ $\gamma = 1.560$ 2V(meas.) = n.d. 2V(calc.) = n.d.

Cell Data: *Space Group*: *Pcaa*. a = 10.527(5) b = 6.626(2) c = 9.783(6) Z = 4

X-ray Powder Pattern: Falotta mine, Oberhalbstein region, Canton Grisons, Switzerland. 6.630 (100), 3.801 (90), 3.153 (80), 2.622 (70), 1.726 (70), 4.635 (60), 2.959 (60), 2.122 (60)

Chemistry: Powder XRD pattern is identical to synthetic MnC₂O₄·3H₂O. (1) Falotta mine, Oberhalbstein region, Canton Grisons, Switzerland; qualitative microprobe EDS analyses show only Mn, C, and O.

Occurrence: Presumably from reaction of humus and oxalic acids (from plants) with manganese minerals in synsedimentary lenses of manganese ore in radiolaritic rocks of an ophiolithic zone.

Association: n.d.

Distribution: From the abandoned manganese mines of Falotta, Parsettens, and Tinzen, Oberhalbstein region, Canton Grisons, Switzerland.

Name: For its type locality, the *Falotta* mine, Switzerland.

Type Material: Natural History Museum Basel, Basel, Switzerland (S69).

References: (1) Graeser S. and W. Gabriel (2016) Falottait (MnC₂O₄·3H₂O) - ein neues Oxalat-Mineral aus den Schweizer Alpen. Schweizer Strahler, 50(3), 20-27 (in German and French). (2) (2020) Amer. Mineral., 105, 1920 (abs. ref. 1).