Esseneite

Crystal Data: Monoclinic. Point Group: 2/m. As prismatic crystals, up to 8 mm.

Physical Properties: Cleavage: Perfect on {110}. Hardness = 6 D(meas.) = n.d.

D(calc.) = 3.54

Optical Properties: Transparent in thin crystals. Color: Reddish brown, becoming darker

Optical Class: Biaxial (-). Pleochroism: X = lemon-yellow; Y = greenish yellow; Z =
apple-green. Orientation: Y = b; Z \(\wedge c = 9^\circ \). Dispersion: \(r < v \), strong. \(\alpha = 1.795(5) \)
\(\beta = 1.815(5) \) \(\gamma = 1.825(5) \) \(2V(\text{meas.}) = 77(5)^\circ \)

Cell Data: Space Group: \(C2/c \). \(a = 9.79(1) \) \(b = 8.822(9) \) \(c = 5.37(1) \) \(\beta = 105.81(9)^\circ \)

Z = 4

X-ray Powder Pattern: Durham ranch, Wyoming, USA.
3.000 (100), 2.526 (70), 2.960 (60), 2.554 (40), 2.576 (30), 1.545 (30), 1.430 (25)

Chemistry:

\[
\begin{align*}
\text{SiO}_2 & \quad 29.51 \\
\text{TiO}_2 & \quad 0.99 \\
\text{Al}_2\text{O}_3 & \quad 17.95 \\
\text{Fe}_2\text{O}_3 & \quad 23.89 \\
\text{FeO} & \quad 0.69 \\
\text{MnO} & \quad 0.11 \\
\text{MgO} & \quad 2.68 \\
\text{CaO} & \quad 23.40 \\
\text{Na}_2\text{O} & \quad 0.14 \\
\text{Total} & \quad 99.36
\end{align*}
\]

(1) Durham ranch, Wyoming, USA; by electron microprobe, average of 43 analyses on several
grains, Fe\(^{2+}\):Fe\(^{3+}\) calculated from normalized formula; corresponds to \((\text{Ca}_{1.01}\text{Na}_{0.01})\Sigma=1.02
(\text{Fe}_{0.72}\text{Mg}_{0.16}\text{Al}_{0.04}\text{Ti}_{0.03}\text{Fe}_{0.02})\Sigma=0.97(\text{Si}_{1.19}\text{Al}_{0.81})\Sigma=2.00\text{O}_6\).

Mineral Group: Pyroxene group.

Occurrence: A high-temperature, low-pressure, oxidized and quenched crystallization product
derived from fused sediments contiguous to naturally combusted coal seams.

Association: Anorthite, melilite, magnetite-hercynite, glass.

Distribution: At Durham ranch, in the Powder River basin, 13 km northeast of Reno Junction
and 25 km south of Gillette, Campbell Co., Wyoming, USA.

Name: For Dr. Eric J. Essene, Professor at the University of Michigan, Ann Arbor, Michigan,
USA, and discoverer of the first specimens.

(CaFe\(^{3+}\)AlSiO\(_6\)), a new pyroxene produced by pyrometamorphism. Amer. Mineral., 72, 148–156.