
Physical Properties: Fracture: Conchoidal. Hardness = 2–3 D(meas.) = 2.06(1) (synthetic). D(calc.) = 2.04 Decomposes in H$_2$O and in a humid atmosphere.

Optical Properties: Transparent to translucent. Color: Colorless. Optical Class: Biaxial (+). $\alpha = 1.462(2)$ $\beta = [1.483]$ $\gamma = 1.531(2)$. 2V(meas.) = $\sim$64$^\circ$

Cell Data: Space Group: $P2_1/n$ (synthetic). $a = 11.404(4)$ $b = 6.228(2)$ $c = 6.826(2)$ $\beta = 99.66(2)^\circ$ $Z = 2$

X-ray Powder Pattern: Gerstenegg-Sommerloch tunnel, Switzerland. 2.98 (10b), 3.12 (8), 2.47 (8), 2.56 (7), 2.06 (7), 6.33 (6), 4.20 (4)

Chemistry: (1) Identity determined by microchemical determination of the presence of K and Mg, in conjunction with optical and X-ray data similar to the synthetic compound.

Occurrence: A secondary mineral in fractures in aplite granite and granodiorite.

Association: Grimselite, schröckingerite, calcite, monohydrocalcite.

Distribution: In the Gerstenegg-Sommerloch cable tunnel, north of the Grimsel Pass, Bern, Switzerland.

Name: Honoring Noel Stanley Bayliss, Professor of Chemistry, University of Western Australia, Nedlands, Western Australia, who characterized the synthetic compound.

Type Material: Institute for Mineralogy and Crystal Chemistry, University of Stuttgart, Stuttgart, Germany.


All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Mineral Data Publishing.